

 Navigation

 	
 index

 	
 next |

 	Okaara 1.0.32-1 documentation

Okaara

Overview

Okaara is a series of utilities for writing command line interfaces in Python.
The provided functionality can be broken down into three categories: reading and
writing utilities, an interactive shell framework, and a command line interface
framework.

Input & Output

Okaara provides a wrapper around accepting user input and displaying output.
At it’s most basic level, the read/write methods allow standard input/output
to be replaced transparent from the code that uses them. More useful is the
ability to script input and capture and tag output for use in unit tests.

In addition to being an abstraction from standard output, the Okaara prompt
provides a number of utilities for more advanced output, such as:

	Automatically wrapping text to either a set width or the current size of the screen

	Colored text

	Centering text

	Arbitrary cursor placement in the terminal

The okaara prompt also may be configured to tag output written to it. This
ability may be used in unit tests to assert the correct messages are being
displayed to the user. More information and examples of this can be found on
the prompt usage and examples page.

The other major piece of functionality in the Okaara prompt is comprised of a
series of formatted prompts to request input from the user. A user prompt can
be configured to allow or deny empty responses, allow the user to indicate the
prompt has been aborted and no input was specificed, and capture a keyboard
interrupt to allow the caller to react gracefully from it. Many prompt calls
include input validation where applicable and will automatically reprompt the
user in the event of an invalid input. The prompt functionality includes:

	Ensuring the user inputs one in a series of enumerated values

	Simple yes/no prompt

	Requiring a numeric input, optionally indicating non-zero or positive number restrictions

	Range-based numeric input

	File or directory name input, ensuring the existence of the entered file/directory

	Menu-based inputs, including the ability to select more than one value from the menu before proceeding

	Hidden password input

More information can be found on the usage and examples page
or in the prompt module API documentation.

Okaara also provides a progress module for rendering progress indicators for
long running operations. Progress bars and spinners are supported, both of which
may be configured with custom rendering ticks and can automatically wrap an
iterator to simplify the update of the widget.

For more information on the progress module, see some examples
or the progress module API documentation.

Shell

Okaara provides the framework around creating interactive shell interfaces. A
shell consists of one or more screens, each with their own menu of possible
commands. Okaara provides the structure for navigating between screens, rendering
of a screen’s menu, and accepting the appropriate trigger to execute a menu’s command.

For more information on the shell module, see the usage and examples page
or the shell module API documentation.

CLI

In Okaara, a CLI provides the ability to structure and execute multiple, different
commands to a single script. Commands may be grouped into sections to provide a
flexible organizational structure for the provided functionality.

For more information on the CLI module, see the usage and examples page
or the CLI module API documentation.

Download

Built RPMs can be found in Fedora.

Source code can be found at: https://github.com/jdob/okaara/

Usage Documentation

	Prompt
	Text Modifiers

	Keyboard Interrupts

	Colors

	Testing

	Progress Bars & Spinners
	Progress Bars

	Spinners

	Command Line Interface
	Overview

	Getting Started

	Commands

	Advanced Usage

	Shell
	Overview

	Getting Started

API Documentation

	Input/Output
	Prompt Class APIs

	Recorder Class APIs

	Script Class APIs

	Progress Trackers
	ProgressBar Class APIs

	Spinner Class APIs

	ThreadedSpinner Class APIs

	Interactive Shell
	Shell Class APIs

	Screen Class APIs

	MenuItem Class APIs

	Exceptions

	Command Line Interface
	Cli Class APIs

	Section Class APIs

	Command Class APIs

	Option Class APIs

	Flag Class APIs

	Exceptions

 Copyright 2012, Jay Dobies.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 	latest

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Okaara 1.0.32-1 documentation

Prompt

In most cases, there is very little to configure when creating a new Prompt
instance. The defaults will use standard input and output and will not record
any tag information passed into write calls. Simply instantiate and use:

p = Prompt()
p.write('Goodbye World')
name = p.read('What is your name?')

Text Modifiers

A few methods are used to modify text but not actually write it. The intention
here is to chain them together to pre-format the text. For example:

p.write(p.center(p.color('Important', COLOR_RED)))

In some cases, shortcuts are provided in the write methods themselves:

p.write('Important', color=COLOR_RED)

Keyboard Interrupts

By default, Okaara will intercept KeyboardInterrupt exceptions (i.e. if the user
presses ctrl+C) and return to the caller a reference to the ABORT object
in the prompt module. This lets the caller easily distinguish between an empty
input from the user (will be an empty string) versus the user cancelling during
the read. This behavior can be overridden to allow KeyboardInterrupt exceptions
to be raised using the interruptable flag on the read method.

For a quick example:

from okaara.prompt import Prompt, ABORT
p = Prompt()

age = p.read('How old are you?')
if age is ABORT:
 p.write('Fine, be like that.')

Colors

The prompt module defines a number of constants used for coloring text. The
COLOR_* variables should be the only values passed to either the color
method or the color attribute on the write method.

If the prompt is configured to not display colors (enable_color in the
constructor), all calls to the color method will not apply the color formatting.
There is no need to manually decide whether or not to make the color call,
the prompt instance will take care of enabling/disabling them for you.

Testing

I’m a compulsive unit tester, so I wanted to provide an answer for some of the
difficulties in unit testing a user interface.

Testing Output

One option to assert the output displayed to a user is to capture it and
compare it against expected results. This can get wonky as the UI evolves and
phrasing changes.

Okaara addresses by allowing a tag to be specified to each write call. The
tag should be something simple to identify what is being displayed in the call.
During unit testing, the prompt can be configured to capture these tags and
make them available in the test verification step.

For example, given the following UI:

def validate(value):
 if value > 0:
 p.write('Entered value was acceptable', tag='success')
 else:
 p.write('Invalid value, exiting', tag='error')

In the test case for this UI, recording of tags would be enabled and the test
would verify the correct output was displayed by checking the tags:

p = Prompt(record_tags=True)
client = MyClient(p)

client.validate(3)
self.assertEqual('success', p.get_read_tags()[0])

Testing Input

The same tagging concept for writing is available to reading user input as well.
There is a corresponding get_write_tags method for retrieving these tags.

The prompt module also provides the Script class to aid in testing. An
instance of this class is pre-populated with the lines a simulated user would
input. The instance is passed as the input parameter to the Prompt class.
Each time the prompt attempts to read a value the script will pop the next
string off the list of lines provided.

 Copyright 2012, Jay Dobies.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 	latest

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Okaara 1.0.32-1 documentation

Progress Bars & Spinners

Examples of the progress widgets in action can be seen by running the progress.py
module directly:

cd src/okaara
python progress.py

Progress Bars

When instantiated, the only required argument is the Prompt class instance
used to render the progress bar. The total number of values the bar will
represent, or for that matter the data itself, are not needed at instantiation time.

At each step of the iteration, the render method is called. This will redraw
the progress bar using the current step and total number of steps passed into it.
Additionally, a message for that step may be specified to be displayed under
the bar. This message may be a single line or contain n characters to have it
display across multiple lines.

The simplest implementation of a progress bar can be seen in the following
code snippet (module imports omitted for brevity):

p = Prompt()
pb = ProgressBar(p, show_trailing_percentage=True)

total = 21
for i in range(0, total + 1):
 pb.render(i, total)
 time.sleep(.25)

The output will continue to update as it executes and is difficult to capture in
documentation. The end result will appear as follows:

[======================================] 100%

It’s also possible to customize much of the rendering of the progress bar itself.
The following code snippet changes the default characters used for the bar
and disables the percentage indicator at the right:

pb = ProgressBar(p, fill='*', left_tick='-<', right_tick='>-', show_trailing_percentage=False)

And the output at the end:

-<************************************>-

Again, it’s hard to show how the progress bar updates during execution. The following
code snippet shows how to add a message to the progress bar:

for i in range(0, total + 1):
 message = 'Step: %d of %d' % (i, total)
 pb.render(i, total, message)

At the end of the execution, the final result displays:

[======================================] 100%
Step: 21 of 21

Instead of manually handling the call to render, an iterator may be wrapped
by the progress bar to automatically render it at each step in the iteration.
When the iterator is wrapped, a function can be supplied that accepts the
current item being rendered and return a message string to use for that step.
For example, to automatically render a progress bar over a series of items:

wrapped = pb.iterator(items, message_func=lambda x: 'Generated for item: %s' % x)

for w in wrapped:
 # Do important stuff but don't worry about progress bar

Each time an item is iterated over, the progress bar will be updated, generating
a message custom for that particular item.

Spinners

If progress bars were difficult to show in static documentation, spinners are
going to be near impossible. :)

A spinner is a sequence of characters that will render in place during a long
running operation. Unlike a progress bar, a spinner has no concept of how many
times it will be spun nor can it display a message at each step.

The simplest usage of a spinner is as follows:

p = Prompt()
spinner = Spinner(p)

total = 10
for i in range(0, total):
 spinner.spin()
 time.sleep(.25)

That example will use the default sequence (it looks like a line spinning around).
At the end of executing the above code, the last rendered iteration look like:

[\]

A custom sequence of characters may be supplied, along with the left/right
boundaries of the spinner:

sequence = '! @ # $ %'.split()
spinner = Spinner(p, sequence=sequence, left_tick='{', right_tick='}')

With the custom ticks, the end output of a loop oer 10 items looks like:

{%}

Again, not terribly interesting in static documentation. All of these examples
appear in the progress module itself and can be seen in action using the instructions
above.

The Spinner class also supports wrapping an iterator; the process is the same
as for progress bars.

 Copyright 2012, Jay Dobies.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 	latest

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Okaara 1.0.32-1 documentation

Command Line Interface

Overview

A CLI in Okaara is an executable that uses a series of arguments to perform
different functions in an application. Commands, which are used to trigger
an action by the CLI, are grouped into sections and subsections to better
organize a wide array of functionality within a single executable. Options can
defined for a command and Okaara will parse and provide their values to the
appropriate code.

Below is an example of what some basic user operations might look like in a
Okaara CLI:

$ my-app users create --login tstark --password okaara --group admin
User successfully created.

$ my-app users list --show-admins
Users:
 tstark
 bbanner
 hpym

$ my-app login --username tstark --password okaara
User successfully logged in.

Getting Started

The root of everything is the CLI class. Once instantiated, it can be
populated with the appropriate sections and commands to provide its functionality.
A prompt instance may be provided if necessary, but otherwise the defaults should
be enough to get started.

A Section is used to organize a group of related commands or subsections.
A section works as a namespace when referring to a specific command in the CLI.
For example, the following is a possible call to a demo CLI:

$ demo section1 subsection3 command2 --opt1 value --flag1

Okaara will translate the user call and navigate to the appropriate place in
the code. If the user call doesn’t refer to a valid structure, Okaara will detect
the closest match and display its usage.

A Command may define either Option or Flag arguments. Okaara will use
the definitions to validate user input and make them available to the code that
handles the command.

Once the CLI has been assembled, it’s invoked using the run method. This
call takes a list of strings to process; the expectation is to pass in
sys.argv[1:] but that’s up to the caller (for example, passing in a list of
known strings for unit tests).

Those are the basic concepts. Putting them all together can be seen in the
sample CLI code included in the source or at:
https://github.com/jdob/okaara/blob/master/samples/sample_cli.py

Commands

Command objects are used to link the framework to the actual code to execute
when the user runs the command. At instantiation, the following is provided:

	The name used to invoke the command from the command line.

	A description of the command, displayed in the command’s usage.

	A reference to the method to invoke when the command is run is specified.

For example, a create user command might look like the following:

class CreateUserCommand(Command):
 def __init__(self):
 Command.__init__(self, 'create', 'creates a new user', self.create)

 def create(self):
 # Create logic here

The next step is to support arguments to the command itself. Pulp provides
two classes to this end. The Option class is used for arguments that accept
a value, such as --username jdob. The Flag class is used to describe
arguments whose presence implies true, such as --enabled.

These classes take slightly different parameters, the most notable being that
there is no concept of required for flags; a required flag would always resolve
to true and not carry any meaning.

In both cases, the name parameter defines how Okaara will reference the value
for the argument. It is also what the user will use to refer to it when calling
the executable. Alternate command line triggers can be defined by passing a
list of them to the aliases parameter, however the Okaara name for the value
will always be the name of the command.

By default, Okaara uses optparse to handle parsing arguments to a command. Thus
the normal rules apply, such as multi-character names beginning with “–” and
single character names beginning with a single “-”. In more rare cases, the
default optparse parser can be overridden in the Command object itself to
provide behavior not possible through the Okaara objects.

Okaara will verify that all options marked as required are present in the call.
If not, the user is displayed the command usage and a list of missing required
values. Okaara will pass all defined options to the command’s configured method
when it invokes it as keyword arguments. Any options not specified by the user
will have a value of None.

Taking the create example from above, below is an enhanced version that is
configured with options (both required and optional) and flags:

class CreateUser(Command):
 def __init__(self):
 Command.__init__(self, 'create', 'creates a new user', self.create)

 self.create_option('--username', 'login for the new user', aliases=['-u'], required=True)
 self.create_option('--group', 'group to add the user to', required=False)
 self.create_flag('--disabled', 'do not allow logins to the new user')

 def create(self, **kwargs):
 username = kwargs['username']
 group = kwargs['group']
 disabled = kwargs['disabled']

 # Create the user
 if disabled:
 # Call to disable the user immediately

Commands are added either to a section or to the root of the CLI itself. The
create user command above can be added to a simple CLI using the following:

cli = Cli()
users_section = cli.create_section('users', 'user related operations')
users_section.add_command(CreateUserCommand())

Advanced Usage

Conventions

Throughout the APIs there are a number of methods that begin with either add_
or create_. The add methods are used with object instances directly, such
as to add a previously instantiated command to a section. The create methods
are syntactic sugar to shortcut the object creation and return the appropriate
instantiated object. The end result is the same, it’s simply a matter of
stylistic preference.

Multiple Option Values

If an option is created with the allow_multiple parameter set to true, users
can specify the option multiple times on the command line. All of the values will
be provided to the command’s method when invoked. In this case, the value of the
option in the keyword arguments will always be a list, regardless of whether
or not the user elected to specify multiple values.

Option Description Prefixes

The Command class defines two constants, REQUIRED_OPTION_PREFIX and
OPTIONAL_OPTION_PREFIX. The values of each of the variables is added in
front of an option’s description when its usage is displayed. Setting either
of these values provides a simple way to achieve consistency across a UI in
terms of flagging an option’s usage.

UnknownArgsParser

In most cases, a command will have a priori knowledge of its expected options
and flags. However, it is possible that a command would want to leave it entirely
open ended for the user. In these cases, the parser parameter on the Command
instance should be set to override the default optparse behavior.

The cli module provides a class called UnknownArgsParser for this need. If
an instance of this class is provided to the command, it will ignore any options
and flags defined for it. Instead, it will read in any user-supplied arguments
and make them available in the keyword arguments to the command’s method. The
likely usage at that point will be to iterate over the keyword arguments for
each provided value.

CLI Map

The print_cli_map method in the CLI is used to display the hierarchy of
sections, subsections, and commands in the CLI. This call can be wired to a
command in the CLI itself to provide this ability for users.

 Copyright 2012, Jay Dobies.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 	latest

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Okaara 1.0.32-1 documentation

Shell

Overview

Let’s start with some terminology and basic plumbing.

	A shell is a running process that accepts multiple user commands until explicitly exited.

	A shell is made up of one or more screens.

	Each screen has its own menu.

	The menu is used to let the user make the shell do something.

	A user inputs a menu item’s trigger to invoke the code tied to that item.

	The shell framework provides hooks to navigate from screen to screen and render the menu.

Getting Started

The first step is to create the Shell instance itself. It won’t do much until
we populate it, but it has a number of framework methods we’ll want access to
for the menu items. The defaults should be sufficient in many cases, however
the ability to pass in a specific Prompt instance is available as well.

The bulk of the shell is in the screens. Each screen can be thought of as
similar to a web page. The screen’s menu is used to do things, such as
functionality or transitioning to another screen.

The common usage is to subclass the Screen class for each particular screen,
but that’s not a hard requirement. The main goal in creating a screen is to add
the appropriate menu items for that screen using the add_menu_item method.

Menu items are instances of the MenuItem class and effectively pair the
following pieces:

	The trigger used to invoke the item (e.g. ‘q’ for quit). Multiple triggers
may be passed as a list and there are no restrictions on the length of a trigger.

	The item description to show to the user when rendering the menu.

	The function to invoke when the item is selected by the user.

There are some other things to tweak in a menu item, but those are the basics
and good enough for now.

Keep in mind the Shell instance has a number of navigational methods that
a screen’s menu may want to use. For instance, if a screen should provide the
ability to move to another screen, the shell’s transition method would be
passed to the menu item as its function.

Once the screens are created, they are added to the shell instance. One screen
must be designated as the home screen. The home screen is the first screen
displayed to the user. Additionally, the shell has built in menu functions
for navigating directly back to the home screen. The first screen added to the
shell will be designated as the home screen, however this can later be changed
by specifying is_home=True when adding a different screen.

Once the shell instance is configured, it begins the input loop through the
start method. The loop will continue to run and accept user input until
the stop method on the shell instance is called. Alternatively, the
safe_start method can be used to begin the shell. The difference between
the two is that the latter will restart the input loop in the event an
exception occurs (the one caveat is that a SystemExit exception will still
cause the loop to be interrupted.

A sample shell can be found in the samples section of the source code or at:
https://github.com/jdob/okaara/blob/master/samples/sample_shell.py

 Copyright 2012, Jay Dobies.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 	latest

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Okaara 1.0.32-1 documentation

Input/Output

Prompt Class APIs

	
class okaara.prompt.Prompt(input=<open file '<stdin>', mode 'r' at 0x7fd78b0c50c0>, output=<open file '<stdout>', mode 'w' at 0x7fd78b0c5150>, normal_color='x1b[0m', enable_color=True, wrap_width=None, record_tags=False)

	Used to communicate between the application and the user. The Prompt class can be
subclassed to provide custom implementations of read and write to alter the input/output
sources. By default, stdin and stdout will be used.

	
__init__(input=<open file '<stdin>', mode 'r' at 0x7fd78b0c50c0>, output=<open file '<stdout>', mode 'w' at 0x7fd78b0c5150>, normal_color='x1b[0m', enable_color=True, wrap_width=None, record_tags=False)

	Creates a new instance that will read and write to the given streams.

	Parameters:	
	input (file) – stream to read from; defaults to stdin

	output (file) – stream to write prompt statements to; defaults to stdout

	normal_color (str (one of the COLOR_* variables in this module)) – color of the text to write; this will be used in the color
function to reset the text after coloring it

	enable_color (bool) – determines if this prompt instance will output any modified
colors; if this is false the color() method will
always render the text as the normal_color

	wrap_width (int or None) – if specified, content written by this prompt will
automatically be wrapped to this width

	record_tags (bool) – if true, the prompt will keep track of tags passed
to all write calls

	
center(text, width=None)

	Centers the given text. Nothing is output to the screen; the formatted string
is returned. The width in which to center is the first non-None value
in the following order:

	Provided width parameter

	Instance-level wrap_width value

	Terminal width

	Parameters:	
	text (str) – text to center

	width (int) – width to center the text between

	Returns:	string with spaces padding the left to center it

	Return type:	str

	
clear(clear_character='x1b[2J')

	Writes one of the clear characters to the screen. If none is given,
the entire screen is cleared. One of the CLEAR_* variables can be
used to scope the cleared space.

	Parameters:	clear_character (str) – character code to write; should be one of
the CLEAR_* variables

	
color(text, color)

	Colors the given text with the given color, resetting the output back to whatever
color is defined in this instance’s normal_color. Nothing is output to the screen;
the formatted string is returned.

	Parameters:	
	text (str) – text to color

	color (str) – coding for the color (see the COLOR_* variables in this module)

	Returns:	new string with the proper color escape sequences in place

	Return type:	str

	
get_read_tags()

	Returns the values for all tags that were passed to read calls.
If record_tags is enabled on this instance and a tag was not
specified, an empty string will be added in its place.

	Returns:	list of tag values; empty list if record_tags was set to false

	Return type:	list

	
get_tags()

	Returns all tags for both read and write calls. Unlike read_tags and
write_tags, the return value is a list of tuples. The first entry in
the tuple will be one of [TAG_READ, TAG_WRITE] to indicate what
triggered the tag. The second value in the tuple is the tag itself.

	Returns:	list of tag tuples: (tag_type, tag_value); empty list if
record_tags was set to false

	Return type:	list

	
get_write_tags()

	Returns the values for all tags that were passed to write calls.
If record_tags is enabled on this instance and a tag was not
specified, an empty string will be added in its place.

	Returns:	list of tag values; empty list if record_tags was set to false

	Return type:	list

	
move(direction)

	Writes the given move cursor character to the screen without a new
line character. Values for direction should be one of the MOVE_*
variables.

	Parameters:	direction (str) – move character to write

	
prompt(question, allow_empty=False, interruptable=True)

	Prompts the user for an answer to the given question, re-prompting if the answer is
blank.

	Parameters:	
	question (str) – displayed to the user when prompting for input

	allow_empty (bool) – if True, a blank line will be accepted as input

	interruptable (bool) – if True, keyboard interrupts will be caught and None will
be returned; if False, keyboard interrupts will raise as
normal

	Returns:	answer to the given question or the ABORT constant in this
module if it was interrupted

	
prompt_default(question, default_value, interruptable=True)

	Prompts the user for an answer to the given question. If the user does not enter a value,
the default will be returned.

	Parameters:	default_value (string) – if the user does not enter a value, this value is returned

	
prompt_file(question, allow_directory=False, allow_empty=False, interruptable=True)

	Prompts the user for the full path to a file, reprompting if the file does not
exist. If allow_empty is specified, the validation will only be performed if the
user enters a value.

	
prompt_menu(question, menu_values, interruptable=True)

	Displays a list of items, allowing the user to select a single item in the
list. The index of the selected item is returned. If interruptable is
set to true and the user exits (through ctrl+c), the ABORT constant
is returned.

	Parameters:	
	question (str) – displayed to the user prior to rendering the list

	menu_values (list of str) – list of items to display in the menu; the returned value
will be one of the items in this list

	Returns:	index of the selected item; ABORT if the user elected to abort

	Return type:	int or ABORT

	
prompt_multiselect_menu(question, menu_values, interruptable=True)

	Displays a list of items, allowing the user to select 1 or more items before continuing.
The items selected by the user are returned.

	Returns:	list of indices of the items the user selected, empty list if none are selected;
ABORT is returned if the user selects to abort the menu

	Return type:	list or ABORT

	
prompt_multiselect_sectioned_menu(question, section_items, section_post_text=None, interruptable=True)

	Displays a multiselect menu for the user where the items are broken up by section,
however the numbering is consecutive to provide unique indices for the user to use
for selection. Entries from one or more section may be toggled; the section
headers are merely used for display purposes.

Each key in section_items is displayed as the section header. Each item in the
list at that key will be rendered as belonging to that section.

The returned value will be a dict that maps each section header (i.e. key in section_items)
and the value is a list of indices that were selected from the original list passed in
section_items under that key. If no items were selected under a given section, an empty
list is the value in the return for each section key.

For example, given the input data:

{ 'Section 1' : ['Item 1.1', 'Item 1.2'],
 'Section 2' : ['Item 2.1'],}

The following is rendered for the user:

Section 1
 - 1 : Item 1.1
 - 2 : Item 1.2
Section 2
 - 3 : Item 2.1

If the user entered 1, 2, and 3, thus toggling them as selected, the following would be returned:

{ 'Section 1' : [0, 1],
 'Section 2' : [0],}

However, if only 2 was toggled, the return would be:

{ 'Section 1' : [1],
 'Section 2' : [],}

If the user chooses the “abort” option, None is returned.

	Parameters:	
	question (str) – displayed to the user before displaying the menu

	section_items (dict {str : list[str]}) – data to be rendered; each key must be a string and each value must
be a list of strings

	section_post_text (str) – if specified, this string will be displayed on its own line between
each section

	Returns:	selected indices for each list specified in each section; ABORT
if the user elected to abort the selection

	Return type:	dict {str : list[int]} or ABORT

	
prompt_number(question, allow_negatives=False, allow_zero=False, default_value=None, interruptable=True)

	Prompts the user for a numerical input. If the given value does not represent a number,
the user will be re-prompted until a valid number is provided.

	Returns:	number entered by the user that conforms to the parameters in this call

	Return type:	int

	
prompt_password(question, verify_question=None, unmatch_msg=None, interruptable=True)

	Prompts the user for a password. If a verify question is specified, the
user will be prompted to match the previously entered password (suitable
for things such as changing a password). If it is not specified, the first
value entered will be returned.

The user entered text will not be echoed to the screen.

	Returns:	entered password

	Return type:	str

	
prompt_range(question, high_number, low_number=1, interruptable=True)

	Prompts the user to enter a number between the given range. If the input is invalid, the
user wil be re-prompted until a valid number is provided.

	
prompt_values(question, values, interruptable=True)

	Prompts the user for the answer to a question where only an enumerated set of values
should be accepted.

	Parameters:	values (list) – list of acceptable answers to the question

	Returns:	will be one of the entries in the values parameter

	Return type:	string

	
prompt_y_n(question, interruptable=True)

	Prompts the user for the answer to a yes/no question, assuming the value ‘y’ for yes and
‘n’ for no. If neither is entered, the user will be re-prompted until one of the two is
indicated.

	Returns:	True if ‘y’ was specified, False otherwise

	Return type:	boolean

	
read(prompt, tag=None, interruptable=True)

	Reads user input. This will likely not be called in favor of one of the prompt_* methods.

	Parameters:	prompt (string) – the prompt displayed to the user when the input is requested

	Returns:	the input specified by the user

	Return type:	string

	
reset_position()

	Moves the cursor back to the location of the cursor at the last point
save_position was called.

	
save_position()

	Saves the current location of the cursor. The cursor can be moved back
to this position by using the reset_position call.

	
classmethod terminal_size()

	Returns the width and height of the terminal.

	Returns:	tuple of width and height values

	Return type:	(int, int)

	
wrap(content, wrap_width=None, remaining_line_indent=0)

	If the wrap_width is specified, this call will introduce new line
characters to maintain that width.

	Parameters:	
	content (str) – text to wrap

	wrap_width (int) – number of characters to wrap to

	remaining_line_indent (int) – number of characters to indent any new
lines generated from this call

	Returns:	wrapped version of the content string

	Return type:	str

	
write(content, new_line=True, center=False, color=None, tag=None, skip_wrap=False)

	Writes content to the prompt’s output stream.

	Parameters:	
	content (string) – content to display to the user

	skip_wrap (bool) – if true, auto-wrapping won’t be applied; defaults to false

Recorder Class APIs

	
class okaara.prompt.Recorder

	Suitable for passing to the Prompt constructor as the output, an instance
of this class will store every line written to it in an internal list.

Script Class APIs

	
class okaara.prompt.Script(lines)

	Suitable for passing to the Prompt constructor as the input, an instance
of this class will return each line set within on each call to read.

 Copyright 2012, Jay Dobies.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 	latest

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Okaara 1.0.32-1 documentation

Progress Trackers

ProgressBar Class APIs

	
class okaara.progress.ProgressBar(prompt, width=40, show_trailing_percentage=True, fill='=', left_tick='[', right_tick=']', in_progress_color=None, completed_color=None, render_tag=None)

	
	
__init__(prompt, width=40, show_trailing_percentage=True, fill='=', left_tick='[', right_tick=']', in_progress_color=None, completed_color=None, render_tag=None)

	

	Parameters:	
	prompt (okaara.prompt.Prompt) – prompt instance to write to

	width (int) – number of characters wide the progress bar should be;
this includes both the fill and the left/right ticks but does
not include the trailing percentage if indicated

	show_trailing_percentage (bool) – if True, the current percentage complete
will be listed after the progress bar; defaults to False

	fill (str) – character to use as the filled value of the progress bar;
this must be a single character or the math gets messed up

	left_tick (str) – displayed on the left side of the progress bar

	right_tick (str) – displayed on the right side of the progress bar

	in_progress_color (str) – color to render the progress bar while it is
incomplete (will also be used for completed bar if completed_color
isn’t specified)

	completed_color (str) – color to render the progress bar once it is
completely filled

	render_tag (object) – if specified, when the bar itself is written to the
prompt it will pass this tag

	
clear()

	Deletes anything rendered by the bar. This may be called after the
long-running task has finished to remove the bar from the screen.
This must be called before attemping to write anything new to the prompt.

	
iterator(iterable, message_func=None)

	Wraps an iterator to automatically make the appropriate calls into
the progress bar on each iteration. The supplied message_func can
be used to derive a message for each step in the iteration. For
example:

it = pb.iterator(items, message_func=lambda x : 'Generated message: %s' % x)
for i in it:
 # do stuff

	Parameters:	
	iterable (iterator) – iterator to wrap

	message_func (function) – called on each step of the iteration, passing in
the latest item retrieved from the iterator

	Returns:	iterator that will draw contents from the supplied iterator
and automatically update the progress bar

	Return type:	iterator

	
render(step, total, message=None)

	Renders the progress bar. The percentage filled will be calculated
using the step and total parameters (step / total).

If message is provided, it will be displayed below the progress bar.
The message will be deleted on the next call to update and can be
used to provide more information on the current step being rendered.

Spinner Class APIs

	
class okaara.progress.Spinner(prompt, sequence=['-', '\', '|', '/'], left_tick='[', right_tick=']', in_progress_color=None, completed_color=None, spin_tag=None)

	
	
__init__(prompt, sequence=['-', '\', '|', '/'], left_tick='[', right_tick=']', in_progress_color=None, completed_color=None, spin_tag=None)

	

	Parameters:	
	prompt (L{Prompt}) – prompt instance to write to

	sequence (list) – list of characters to iterate over while spinning

	left_tick (str) – displayed on the left side of the spinner

	right_tick (str) – displayed on the right side of the spinner

	in_progress_color (str) – color to render the spinner while it is
incomplete (will also be used for completed bar if completed_color
isn’t specified)

	completed_color (str) – color to render the spinner once it is completely filled

	spin_tag (object) – if specified, this tag will be passed to the write call
each time the spinner is updated

	
clear()

	Deletes anything rendered by the spinner. This may be called after the
long-running task has finished to remove the spinner from the screen.
This must be called before attemping to write anything new to the prompt.

	
iterator(iterable)

	Wraps an iterator to automatically render the next step in the spinner
sequence at each pass through it.

	Parameters:	iterable (iterator) – iterator to wrap

	Returns:	iterator that will draw contents from the supplied iterator
and automatically update the progress bar

	Return type:	iterator

	
next(message=None, finished=False)

	Renders the next image in the spinner sequence.

	Parameters:	
	finished – if true, the spinner will apply coloring based on
the completed_color field; defaults to false

	finished – bool

ThreadedSpinner Class APIs

	
class okaara.progress.ThreadedSpinner(prompt, refresh_seconds=0.5, timeout_seconds=30, sequence=['-', '\', '|', '/'], left_tick='[', right_tick=']', in_progress_color=None, completed_color=None, spin_tag=None)

	Renders a spinner in a separate thread at a regular interval. This is useful
in cases where each step in the actual code executing while the spinner is
running takes a variable amount of time; this will mask those differences
from the user and result in a smooth spin.

Once instantiated, the start() method is used to begin the rendering. Each
step is rendered at a rate specified in refresh_seconds in the constructor.
The spinner will continue to render until stop() is called. Callers should
be careful to not use the prompt instance while the spinner is running.

Due to its behavior, the iterator() method in the Spinner base class is
not supported.

	
__init__(prompt, refresh_seconds=0.5, timeout_seconds=30, sequence=['-', '\', '|', '/'], left_tick='[', right_tick=']', in_progress_color=None, completed_color=None, spin_tag=None)

	

	Parameters:	
	refresh_seconds (float) – time in seconds between rendering each step in
the spinner’s sequence

	timeout_seconds – time in seconds after which the spinner will
automatically stop

	
start()

	Causes the spinner to begin rendering steps. The rendering will be
done through the prompt supplied in the constructor however it will be
done in a separate thread. This call will immediately return and the
spinning will begin.

Callers should be careful to call stop() before attempting to use the
prompt again. Bad things would happen if the spinner thread continued
to attempt to update while other content was written to the prompt.

If the spinner is already running from a previous call to start(), this
call has no effect.

	
stop(clear=False)

	Causes the spinner to stop spinning. The thread is not immediately
killed but instead allowed to trigger one more step in the
sequence. This call will block until that step has been rendered. This
shouldn’t be noticable except in cases of a very high value for
refresh_seconds.

 Copyright 2012, Jay Dobies.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 	latest

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Okaara 1.0.32-1 documentation

Interactive Shell

Shell Class APIs

	
class okaara.shell.Shell(prompt=None, auto_render_menu=False, include_long_triggers=True)

	Represents a single shell interface. A shell constists of one or more screens
that drive the different sections of the shell. At any given time, only one
screen is active. Only the active screen’s menu will be used when interacting
with the user’s input. Based on the user’s decisions, the state of the shell
may be transitioned between different screens.

This class contains methods screens and actions may use for transitioning
between screens and interacting with user input.

	
__init__(prompt=None, auto_render_menu=False, include_long_triggers=True)

	Creates an empty shell. At least one screen must be added to the shell
before it is used.

	Parameters:	
	prompt (L{Prompt}) – specifies a prompt object to use for reading/writing to the
console; if not specified will default to L{Prompt}

	auto_render_menu (bool) – if True, the menu will automatically be rendered after
the execution of each menu item; defaults to False

	include_long_triggers (bool) – if True, the long versions of default triggers will
be added, if False only single-character triggers
will be added; defaults to True

	
add_menu_item(menu_item)

	Adds a new menu item that will be available anywhere in the shell.
Each menu item added to this screen must have a unique trigger.
If a menu item with the same trigger already exists, it will be
removed from the menu and replaced by the newly added item.

	Parameters:	menu_item (L{MenuItem}) – new item to add to the shell; may not be None

	
add_screen(screen, is_home=False)

	Adds a new screen for the shell. If a screen was previously added with the
same screen ID, the newly added screen will replace it.

	Parameters:	screen (L{Screen}) – describes a screen in the shell; may not be None

	
clear_screen()

	Calls to the command line to clear the console.

	
execute(func, *args, **kwargs)

	Executes a function selected by the user from a menu item. This
call may raise Exit in order to quit the shell.

Subclasses should override this method to inject pre-run and post-run functionality.

	
home()

	Transitions the state of the shell to the home screen.

	
previous()

	Transitions the state of the shell to the previous screen. If there is no
previous screen, the shell will be transitioned to the home screen.

	
render_menu(display_shell_menu=True)

	Renders the menu for the current screen to the screen.

	
safe_start(show_menu=True, clear=True)

	Launches the shell in an exception block to catch all unexpected exceptions
to prevent the entire thing from crashing. If an exception is caught, the
start loop will be restarted.

	
start(show_menu=True, clear=True)

	Starts the loop to listen for user input and handle according to the current
screen.

	
stop()

	Causes the shell to stop listening for user commands.

	
transition(to_screen_id, show_menu=False, clear=False)

	Transitions the state of the shell to the identified screen. If no screen
exists with the given ID, the shell will be transitioned to the home screen.

	Parameters:	
	to_screen_id (string) – identifies the screen to change the shell to; may not
be None

	show_menu (bool) – if True, the menu for the newly transitioned to screen
will be displayed

	clear (bool) – if True, the screen will be cleared before the transition is made

Screen Class APIs

	
class okaara.shell.Screen(id)

	A screen is an individual “section” of a shell. The granularity of its use will
vary based on the application but can most easily be related to different
screens in a graphical UI.

	
__init__(id)

	

	Parameters:	id (string) – uniquely identifies this screen instance in a shell; may not
be None

	
add_menu_item(menu_item)

	Adds a new menu item that will be available on this screen. Each menu item
added to this screen must have a unique trigger. If a menu item with
the same trigger already exists, it will be removed from the menu and
replaced by the newly added item.

	Parameters:	menu_item (L{MenuItem}) – new item to add to this screen; may not be None

	
item(trigger)

	Returns the menu item for the given trigger if one exists; None otherwise.

	Parameters:	trigger (string) – identifies the menu item being searched for

	Returns:	menu item for the given trigger if one is found; None otherwise

	Return type:	L{MenuItem} or None

	
items()

	Returns a list of menu items in this screen.

	Returns:	list of menu items; empty list if none have been added

	Return type:	list of L{MenuItem}

MenuItem Class APIs

	
class okaara.shell.MenuItem(triggers, description, func=<function noop at 0x2ba5578>, *args, **kwargs)

	An individual menu item the user can interact with. The shell instance will
take care of determining which menu item the user has selected and invoking
its associated function. Any extra arguments input by the user when calling
the menu item will be passed to the function on invocation.

The shell reserves certain triggers for general use. Be sure that a menu
item trigger does not overlap with one of the shell-level triggers defined
in the shell instance.

	
__init__(triggers, description, func=<function noop at 0x2ba5578>, *args, **kwargs)

	

	Parameters:	
	triggers (str or list) – character or string (or list of them) the user will
input to cause the associated function to be invoked;
may not be None

	description (string) – short (1-2 line) description of what the menu item
does; displayed

	func (function) – function to invoke when this menu item is selected; extra
arguments specified after the trigger will be passed to
this function; may not be None

	args – arguments that will be passed to the function when it is
executed

	kwargs – key word arguments to be passed to the function when it
is executed

Exceptions

	
class okaara.shell.Exit

	May be raised by any menu item function to stop the shell loop.

 Copyright 2012, Jay Dobies.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 	latest

 Navigation

 	
 index

 	
 previous |

 	Okaara 1.0.32-1 documentation

Command Line Interface

Cli Class APIs

	
class okaara.cli.Cli(prompt=None)

	Representation of the CLI being created. Coders should create an instance of
this class as the basis for the CLI. At that point, calling add_* methods
will return the nodes/leaves of the CLI tree to further manipulate and
create the desired CLI hierarchy.

	
__weakref__

	list of weak references to the object (if defined)

	
add_command(command)

	Adds a command that may be executed in this section (in other words, a
leaf in this node of the CLI tree). Any arguments that were specified
after the path used to identify this command will be passed to the
command’s execution itself.

	Parameters:	command (Command) – command object to add

	
add_section(section)

	Adds a new section to the CLI. Users will be able to specify the given
name when specifying this section. Doing so will recurse into the
section’s subtree to continue parsing for other subsections or commands.

	Parameters:	section (Section) – section instance to add

	
create_command(name, description, method, usage_description=None, parser=None)

	Creates a new command in this section. The given name must be
unique across all commands and subsections within this section.
The command instance is returned and can be further edited except
for its name.

Commands created in this fashion do not need to be added to this
section through the add_command method.

	Parameters:	
	name (str) – trigger that will cause this command to run

	description (str) – user-readable text describing what happens when
running this command; displayed to users in the usage output

	method (function) – method that will be invoked when this command is run

	usage_description (str or None) – optional extra text that is only displayed
when viewing the full usage of this command

	parser (OptionParser) – if specified, the remaining arguments to this command
as specified by the user will be passed to this object to
be handled; the results will be sent to the command’s method

	Returns:	instance representing the newly added command

	Return type:	Command

	
create_section(name, description)

	Creates a new subsection at the root of the CLI. The given name must be
unique across all commands and subsections within this section. The
section instance is returned and can be further edited except for its name.

Sections created in this fashion do not need to be added through the
add_section method.

	Parameters:	
	name (str) – identifies the section

	description (str) – user-readable text describing the contents of this
subsection

	Returns:	instance representing the newly added section

	Return type:	Section

	
create_subsection(name, description)

	Syntactic sugar method that functions identical to create_section.

	Return type:	Section

	
find_command(name)

	Returns the command under this section with the given name.

	Parameters:	name (string) – required; name of the command to find

	Returns:	command object for the matching command if it exists; None otherwise

	Return type:	Command

	
find_section(name)

	Returns the subsection of this section with the given name.

	Parameters:	name (string) – required; name of the subsection to find

	Returns:	section object for the matching subsection if it exists; None otherwise

	Return type:	Section

	
find_subsection(name)

	Syntactic sugar method that functions identical to find_section.

	
print_cli_map(indent=-2, step=2, show_options=False, section_color=None, command_color=None)

	Prints the structure of the CLI in a tree-like structure to indicate
section ownership.

	Parameters:	
	indent (int) – number of spaces to indent each section

	step (int) – number of spaces to increment the indent on each iteration
into a section

	show_options (bool) – if true, command options will be displayed; defaults
to false

	section_color (str) – if specified, section names will be highlighted
with this color

	command_color (str) – if specified, command names will be highlighted
with this color

	
remove_command(name)

	Removes the command with the given name. If no command exists with that
name, this call has no effect (no error is raised).

	Parameters:	name (str) – name of the command to remove

	
remove_section(name)

	Removes the section with the given name. If no section exists with that
name, this call has no effect (no error is raised).

	Parameters:	name (str) – name of the section when it was added

	Returns:	subsection instance of one was removed; None otherwise

	Return type:	Section

	
remove_subsection(name)

	Syntactic sugar method that functions identical to remove_section.

	
run(args)

	Driver for the CLI. The specified arguments will be parsed to determine
which command to execute, as well as any arguments to that command’s
execution. After assembling the CLI using the add_* calls, this method
should be run to do the actual work.

	Parameters:	args (list) – defines the command being invoked and any arguments to it

	Returns:	exit code as indicated by the command that is executed,
suitable for using as the executable exit code

	Return type:	int

Section Class APIs

	
class okaara.cli.Section(name, description)

	Represents a division of commands in the CLI. Sections may contain other
sections, which creates a string of arguments used to get to a command
(think namespaces).

	
__weakref__

	list of weak references to the object (if defined)

	
add_command(command)

	Adds a command that may be executed in this section (in other words, a
leaf in this node of the CLI tree). Any arguments that were specified
after the path used to identify this command will be passed to the
command’s execution itself.

	Parameters:	command (Command) – command object to add

	
add_subsection(section)

	Adds another node to the CLI tree. Users will be able to specify the
given name when specifying this section. Doing so will recurse into the
subsection’s subtree to continue parsing for other subsections or commands.

	Parameters:	section (Section) – section instance to add

	
create_command(name, description, method, usage_description=None, parser=None)

	Creates a new command in this section. The given name must be
unique across all commands and subsections within this section.
The command instance is returned and can be further edited except
for its name.

Commands created in this fashion do not need to be added to this
section through the add_command method.

	Parameters:	
	name (str) – trigger that will cause this command to run

	description (str) – user-readable text describing what happens when
running this command; displayed to users in the usage output

	method (function) – method that will be invoked when this command is run

	usage_description (str or None) – optional extra text that is only displayed
when viewing the full usage of this command

	parser (OptionParser) – if specified, the remaining arguments to this command
as specified by the user will be passed to this object to
be handled; the results will be sent to the command’s method

	Returns:	instance representing the newly added command

	Return type:	Command

	
create_subsection(name, description)

	Creates a new subsection in this section. The given name must be unique
across all commands and subsections within this section. The section
instance is returned and can be further edited except for its name.

Sections created in this fashion do not need to be added to this section
through the add_section method.

	Parameters:	
	name (str) – identifies the section

	description (str) – user-readable text describing the contents of this
subsection

	Returns:	instance representing the newly added section

	Return type:	Section

	
find_command(name)

	Returns the command under this section with the given name.

	Parameters:	name (string) – required; name of the command to find

	Returns:	command object for the matching command if it exists; None otherwise

	Return type:	Command

	
find_subsection(name)

	Returns the subsection of this section with the given name.

	Parameters:	name (string) – required; name of the subsection to find

	Returns:	section object for the matching subsection if it exists; None otherwise

	Return type:	Section

	
print_section(prompt, indent=0, step=2)

	Prints the direct children of a single section; this call will not
recurse into the children and print their hierarchy.

	Parameters:	
	prompt (Prompt) – required; prompt instance to print to

	indent (int) – number of spaces to indent each section

	step (int) – number of spaces to increment the indent on each iteration
into a section

	
remove_command(name)

	Removes the command with the given name. If there is no command with
the given name, this call does nothing (no error is raised).

	Parameters:	name (str) – name of the command when it was added

	Returns:	command instance if one was removed; None if it didn’t exist

	Return type:	Command

	
remove_subsection(name)

	Removes the subsection with the given name. If there is no subsection
with the given name, this call does nothing (no error is raised).

	Parameters:	name (str) – name of the section when it was added

	Returns:	subsection instance if one was removed; None if it didn’t exist

	Return type:	Section

	
verify_new_structure(name)

	Integrity check to validate that the CLI has not been configured with an
entity (subsection or command) with the given name.

	Parameters:	name (string) – name of the subsection/command to look for

	Raises InvalidStructure:

		if there is an entity with the given name

Command Class APIs

	
class okaara.cli.Command(name, description, method, usage_description=None, parser=None)

	Represents something that should be executed by the CLI. These nodes will be
leaves in the CLI tree. Each command is tied to a single python method and
will invoke that method with whatever arguments follow it.

	
__weakref__

	list of weak references to the object (if defined)

	
add_flag(flag)

	Adds a flag that can be specified when executing this command. As Flag
is a subclass of Option, this call has the same effect as add_option
and is simply included as syntactic sugar for completeness.

	Parameters:	flag (Flag) – flag to add to the command

	
add_option(option)

	Adds an option that can be specified when executing this command. When
executing the command, the user specified arguments to the command are
parsed according to options specified in this fashion.

	Parameters:	option (Option) – option (or flag) to add to the command

	
add_option_group(option_group)

	Adds an option group to the command. Option groups will be rendered in
the order they are added.

	Parameters:	option_group (OptionGroup) – option group

	
all_options()

	Returns a single list of all options in the command, both directly
added and in a group.

	Returns:	list of all Option instances in the command

	Return type:	list

	
create_flag(name, description, aliases=None)

	Creates a new flag for this command. A flag is an argument that accepts
no value from the user. If specified, the value will be True when it
is passed to the command’s underlying method. Flags are, by their
nature, always optional.

The given name must be unique across all options within this command.
The option instance is returned and can be further edited except for
its name.

If the default parser is used by the command, the name must match the
typical command line argument format, either:

	-s - where s is a single character

	–detail - where the argument is longer than one character

The default parser will strip off the leading hyphens when it makes the
values available to the command’s method.

	Parameters:	
	name (str) – trigger to set the flag

	description (str) – user-readable text describing what the option does

	aliases (list) – list of other argument names that may be used to set
the value for this flag

	Returns:	instance representing the flag

	Return type:	Flag

	
create_option(name, description, aliases=None, required=True, allow_multiple=False, default=None, validate_func=None, parse_func=None)

	Creates a new option for this command. An option is an argument to the
command line call that accepts a value.

The given name must be unique across all options within this command.
The option instance is returned and can be further edited except for
its name.

If the default parser is used by the command, the name must match the
typical command line argument format, either:

	-s - where s is a single character

	–detail - where the argument is longer than one character

The default parser will strip off the leading hyphens when it makes the
values available to the command’s method.

The validate_func is run against the user-specified value to verify
it. If the value is valid, this method should do nothing. In the event
the value is invalid, a ValueError or TypeError should be raised.

The signature of this method takes a single argument that is the
user-specified value. This function will only be called if the option
is specified by the user.

The parse_func functions in a similar manner. If specified, it will be
run against the user-specified value. The return from this call will
replace the user-specified value and be passed to the command’s
execution. The arguments are the same as for validate_func. This
function will only be called if the option is specified by the user.

The parse_func may raise ValueError or TypeError as well. The behavior
will be the same as for validate_func, allowing the parse_func, if
applicable, to function as both the validation and parsing logic.

	Parameters:	
	name (str) – trigger to set the option

	description (str) – user-readable text describing what the option does

	aliases (list) – list of other argument names that may be used to set
the value for this option

	required (bool) – if true, the default parser will enforce the the user
specifies this option and display a usage warning otherwise

	allow_multiple (bool) – if true, the value of this option when parsed
will be a list of values in the order in which the user entered them

	default (None) – the default value for optional options

	validate_func (callable) – if specified, this function will be applied to
the user-specified value

	parse_func (callable) – if specified, this function will be applied to the
user-specified value and its return will replace that value

	Returns:	instance representing the option

	Return type:	Option

	
execute(prompt, args)

	Executes this command, passing the remaining arguments into optparse to
process.

	Parameters:	
	prompt (Prompt) – for any output the framework needs to display

	args (list of strings) – any arguments that remained after parsing the command line
to determine the command to execute; these are considered
arguments to the command’s execution itself

	
parse_arguments(prompt, input_args)

	Parses the arguments passed into this command based on the configured
options.

	Returns:	mapping of argument to value

	Return type:	dict

	
print_command_usage(prompt, missing_required=None, unexpected=None, indent=0, step=2)

	Prints the details of a command, including all options that can be
specified to it.

	Parameters:	
	prompt (Prompt) – prompt instance to print the usage to

	missing_required (list of Option) – list of required options that were not
specified on an invocation of the CLI

	unexpected (list of str) – list of specified option names that do not exist
on the command

	indent (int) – number of spaces to indent the command

	step (int) – number of spaces to increment the indent the command’s options

	
print_validation_error(prompt, option, exception)

	Called when an option’s validation function raises a validation error.
This call should display a message describing the option that failed
and any explanation as to why it did.

	Parameters:	
	option (Option) – option instance that failed validation

	exception (Exception) – exception that was raised from the validation function

Option Class APIs

	
class okaara.cli.Option(name, description, required=True, allow_multiple=False, aliases=None, default=None, validate_func=None, parse_func=None)

	Represents an input to a command, either optional or required.

	
__weakref__

	list of weak references to the object (if defined)

	
keyword

	Returns the keyword the option will be stored under when parsed.

	Returns:	keyword to look up in the method handling the command

	Return type:	str

Flag Class APIs

	
class okaara.cli.Flag(name, description, aliases=None)

	Specific form of an option that does not take a value; it is meant to be
either included in the command or excluded.

Exceptions

	
class okaara.cli.InvalidStructure

	Indicates the programmer attempted to assemble a CLI with sections/commands
that would conflict with each other (likely duplicates).

	
class okaara.cli.CommandUsage(missing_options=None, unexpected_options=None)

	Indicates the command parameters were incorrect. If the usage error was the
lack of required parameters, all required parameters that were missing can
be specified.

	Parameters:	
	missing_options (list of Option) – optional list of missing required options

	unexpected_options (list of str) – list of option names that are not defined on the
command but were specified

 Copyright 2012, Jay Dobies.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 	latest

 Navigation

 	
 index

 	Okaara 1.0.32-1 documentation

Index

 _
 | A
 | C
 | E
 | F
 | G
 | H
 | I
 | K
 | M
 | N
 | O
 | P
 | R
 | S
 | T
 | V
 | W

_

 	

 	__init__() (okaara.progress.ProgressBar method)

 	

 	(okaara.progress.Spinner method)

 	(okaara.progress.ThreadedSpinner method)

 	(okaara.prompt.Prompt method)

 	(okaara.shell.MenuItem method)

 	(okaara.shell.Screen method)

 	(okaara.shell.Shell method)

 	

 	__weakref__ (okaara.cli.Cli attribute)

 	

 	(okaara.cli.Command attribute)

 	(okaara.cli.Option attribute)

 	(okaara.cli.Section attribute)

A

 	

 	add_command() (okaara.cli.Cli method)

 	

 	(okaara.cli.Section method)

 	add_flag() (okaara.cli.Command method)

 	add_menu_item() (okaara.shell.Screen method)

 	

 	(okaara.shell.Shell method)

 	add_option() (okaara.cli.Command method)

 	add_option_group() (okaara.cli.Command method)

 	

 	add_screen() (okaara.shell.Shell method)

 	add_section() (okaara.cli.Cli method)

 	add_subsection() (okaara.cli.Section method)

 	all_options() (okaara.cli.Command method)

C

 	

 	center() (okaara.prompt.Prompt method)

 	clear() (okaara.progress.ProgressBar method)

 	

 	(okaara.progress.Spinner method)

 	(okaara.prompt.Prompt method)

 	clear_screen() (okaara.shell.Shell method)

 	Cli (class in okaara.cli)

 	color() (okaara.prompt.Prompt method)

 	Command (class in okaara.cli)

 	

 	CommandUsage (class in okaara.cli)

 	create_command() (okaara.cli.Cli method)

 	

 	(okaara.cli.Section method)

 	create_flag() (okaara.cli.Command method)

 	create_option() (okaara.cli.Command method)

 	create_section() (okaara.cli.Cli method)

 	create_subsection() (okaara.cli.Cli method)

 	

 	(okaara.cli.Section method)

E

 	

 	execute() (okaara.cli.Command method)

 	

 	(okaara.shell.Shell method)

 	

 	Exit (class in okaara.shell)

F

 	

 	find_command() (okaara.cli.Cli method)

 	

 	(okaara.cli.Section method)

 	find_section() (okaara.cli.Cli method)

 	

 	find_subsection() (okaara.cli.Cli method)

 	

 	(okaara.cli.Section method)

 	Flag (class in okaara.cli)

G

 	

 	get_read_tags() (okaara.prompt.Prompt method)

 	get_tags() (okaara.prompt.Prompt method)

 	

 	get_write_tags() (okaara.prompt.Prompt method)

H

 	

 	home() (okaara.shell.Shell method)

I

 	

 	InvalidStructure (class in okaara.cli)

 	item() (okaara.shell.Screen method)

 	

 	items() (okaara.shell.Screen method)

 	iterator() (okaara.progress.ProgressBar method)

 	

 	(okaara.progress.Spinner method)

K

 	

 	keyword (okaara.cli.Option attribute)

M

 	

 	MenuItem (class in okaara.shell)

 	

 	move() (okaara.prompt.Prompt method)

N

 	

 	next() (okaara.progress.Spinner method)

O

 	

 	Option (class in okaara.cli)

P

 	

 	parse_arguments() (okaara.cli.Command method)

 	previous() (okaara.shell.Shell method)

 	print_cli_map() (okaara.cli.Cli method)

 	print_command_usage() (okaara.cli.Command method)

 	print_section() (okaara.cli.Section method)

 	print_validation_error() (okaara.cli.Command method)

 	ProgressBar (class in okaara.progress)

 	Prompt (class in okaara.prompt)

 	prompt() (okaara.prompt.Prompt method)

 	prompt_default() (okaara.prompt.Prompt method)

 	

 	prompt_file() (okaara.prompt.Prompt method)

 	prompt_menu() (okaara.prompt.Prompt method)

 	prompt_multiselect_menu() (okaara.prompt.Prompt method)

 	prompt_multiselect_sectioned_menu() (okaara.prompt.Prompt method)

 	prompt_number() (okaara.prompt.Prompt method)

 	prompt_password() (okaara.prompt.Prompt method)

 	prompt_range() (okaara.prompt.Prompt method)

 	prompt_values() (okaara.prompt.Prompt method)

 	prompt_y_n() (okaara.prompt.Prompt method)

R

 	

 	read() (okaara.prompt.Prompt method)

 	Recorder (class in okaara.prompt)

 	remove_command() (okaara.cli.Cli method)

 	

 	(okaara.cli.Section method)

 	remove_section() (okaara.cli.Cli method)

 	remove_subsection() (okaara.cli.Cli method)

 	

 	(okaara.cli.Section method)

 	

 	render() (okaara.progress.ProgressBar method)

 	render_menu() (okaara.shell.Shell method)

 	reset_position() (okaara.prompt.Prompt method)

 	run() (okaara.cli.Cli method)

S

 	

 	safe_start() (okaara.shell.Shell method)

 	save_position() (okaara.prompt.Prompt method)

 	Screen (class in okaara.shell)

 	Script (class in okaara.prompt)

 	Section (class in okaara.cli)

 	

 	Shell (class in okaara.shell)

 	Spinner (class in okaara.progress)

 	start() (okaara.progress.ThreadedSpinner method)

 	

 	(okaara.shell.Shell method)

 	stop() (okaara.progress.ThreadedSpinner method)

 	

 	(okaara.shell.Shell method)

T

 	

 	terminal_size() (okaara.prompt.Prompt class method)

 	ThreadedSpinner (class in okaara.progress)

 	

 	transition() (okaara.shell.Shell method)

V

 	

 	verify_new_structure() (okaara.cli.Section method)

W

 	

 	wrap() (okaara.prompt.Prompt method)

 	

 	write() (okaara.prompt.Prompt method)

 Copyright 2012, Jay Dobies.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 	latest

 _static/minus.png

_static/comment-bright.png

search.html

 Navigation

 		
 index

 		Okaara 1.0.32-1 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2012, Jay Dobies.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 		latest

_static/comment-close.png

_static/up-pressed.png

_static/up.png

_static/plus.png

_static/down.png

_static/comment.png

_static/ajax-loader.gif

_static/file.png

_static/down-pressed.png

